Three Dimensional Geometry Question 37

Question: If two spheres of radii $ r_1 $ and $ r_2 $ cut orthogonally, then the radius of the common circle is

Options:

A) $ r_1r_2 $

B) $ \sqrt{(r_1^{2}+r_2^{2}}) $

C) $ r_1r_2\sqrt{(r_1^{2}+r_2^{2})} $

D) $ \frac{r_1r_2}{\sqrt{(r_1^{2}+r_2^{2})}} $

Show Answer

Answer:

Correct Answer: D

Solution:

In $ \Delta OPC $ , $ \cos \theta =\frac{r}{r_1} $ In $ \Delta O’PC $ , $ \sin \theta =\frac{r}{r_2} $ As, $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 $ \ $ {{( \frac{r}{r_1} )}^{2}}+{{( \frac{r}{r_2} )}^{2}}=1 $ Þ $ r=\frac{r_1r_2}{\sqrt{r_1^{2}+r_2^{2}}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें