Three Dimensional Geometry Question 374

Question: The equation of the plane which passes through the line of intersection of planes $ \vec{r}.{{\vec{n}}_1}=q_1,\vec{r}.{{\vec{n}}_2}=q $ And is parallel to the line of intersection of planes $ \vec{r}.{{\vec{n}}_3}=q_3 $ and $ \vec{r}.{{\vec{n}}_4}=q_4 $ is

Options:

A) $ [{{\vec{n}}_2}{{\vec{n}}_3}{{\vec{n}}_4}]\vec{r}.{{\vec{n}}_1}-{{\vec{q}}_1}=[{{\vec{n}}_1}{{\vec{n}}_3}{{\vec{n}}_4}]\vec{r}.{{\vec{n}}_2}-{{\vec{q}}_2} $

B) $ [{{\vec{n}}_1}{{\vec{n}}_2}{{\vec{n}}_4}]\vec{r}.{{\vec{n}}_4}q_4=[{{\vec{n}}_4}{{\vec{n}}_3}{{\vec{n}}_1}]\vec{r}.{{\vec{n}}_2}-q_2 $

C) $ [{{\vec{n}}_4}{{\vec{n}}_3}{{\vec{n}}_1}]\vec{r}.{{\vec{n}}_4}-q_4=[{{\vec{n}}_1}{{\vec{n}}_2}\vec{n} 3]\vec{r}.{{\vec{n}}_2}=q_2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ (\vec{r}.{{\vec{n}}_1}+\lambda \vec{r}.{{\vec{n}}_2}=q_1+\lambda q_2) $ ??(i) Where $ \lambda $ is a parameter? So, $ {{\vec{n}}_1}+\lambda {{\vec{n}}_2} $ is normal to plane (i), now, any plane parallel to the line of intersection of the planes $ \vec{r}.{{\vec{n}}_3}=q_3 $ and $ \vec{r}.{{\vec{n}}_4}=q_4 $ is of the form $ \vec{r}.({{\vec{n}}_3}\times {{\vec{n}}_4})=d. $ Hence, we must have $ [{{\vec{n}}_1}+\lambda {{\vec{n}}_2}].[{{\vec{n}}_3}\times {{\vec{n}}_4}]=0 $ or $ [{{\vec{n}}_1}{{\vec{n}}_3}{{\vec{n}}_4}]+\lambda [{{\vec{n}}_2}{{\vec{n}}_3}{{\vec{n}}_4}]=0 $ or $ \lambda =\frac{-[{{{\vec{n}}}_1}{{{\vec{n}}}_3}{{{\vec{n}}}_4}]}{[{{{\vec{n}}}_2}{{{\vec{n}}}_3}{{{\vec{n}}}_4}]} $ on putting this value in Eq. (i), we have the equation of the required plane as $ \vec{r}.{{\vec{n}}_1}-q_1=\frac{[{{{\vec{n}}}_1}{{{\vec{n}}}_2}{{{\vec{n}}}_4}]}{[{{{\vec{n}}}_2}{{{\vec{n}}}_3}{{{\vec{n}}}_4}]}(r.{{\vec{n}}_2}-q_2) $ or $ [{{\vec{n}}_2}{{\vec{n}}_3}{{\vec{n}}_4}]\vec{r}.{{\vec{n}}_1}-q_1=[{{\vec{n}}_1}{{\vec{n}}_3}{{\vec{n}}_4}]\vec{r}.{{\vec{n}}_2}-q_2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें