Three Dimensional Geometry Question 375

Question: If the lines $ \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} $ and $ \frac{x-3}{1}=\frac{y-k}{1}=\frac{z}{1} $ intersect, then k =

[IIT Screening 2004]

Options:

A) $ \frac{2}{9} $

B) $ \frac{9}{2} $

0

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Any point on $ \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} $ $ =\lambda $ is,
$ (2\lambda +1,,3\lambda -1,,4\lambda +1);\lambda \in R $
Any point on $ \frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1} $ $ =\mu $ is,
$ (\mu +3,,2\mu +k,,\mu );,\mu \in R $
The given lines intersect if and only if the system of equations (in $ \lambda , $ and $ \mu $ )
$ 2\lambda +1=\mu +3 $ …..(i)
$ 3\lambda -1=2\mu +k $ …..(ii)
$ A+2B+3C=0 $ …..(iii)
has a unique solution.
Solving (i) and (iii), we get $ \lambda =\frac{-3}{2},,\mu =-5 $
From (ii), we get $ \frac{-9}{2}-1=-10+k\Rightarrow k=\frac{9}{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें