Three Dimensional Geometry Question 379

Question: The distance between the line $ \vec{r}.2\hat{i}-2\hat{j}+3\hat{k} $ $ +\lambda (\hat{i}-\hat{j}+4\hat{k}) $ and the plane $ \vec{r}.(\hat{i}-5\hat{j}+\hat{k})=5 $ is

Options:

A) $ \frac{10}{3\sqrt{3}} $

B) $ \frac{10}{9} $

C) $ \frac{10}{3} $

D) $ \frac{3}{10} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] It is obvious that the given line and plane are parallel. Given point on the lie is $ A(2,-2,3). $ $ B(0,0,5) $ is a point the plane. Therefore, $ \xrightarrow[AB]{}=(2-0)\hat{i}+(-2-0)\hat{j}+(3-5)\hat{k} $ Then distance of B from the plane = Projection of $ \xrightarrow[AB]{} $ on vector $ \hat{i}+5\hat{j}+\hat{k} $ $ P=| \frac{(2\hat{i}-2\hat{j}-2\hat{k}).(\hat{i}+5\hat{j}+\hat{k})}{\sqrt{1+25+1}} |=| \frac{2-10-2}{\sqrt{27}} |=\frac{10}{3\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें