Three Dimensional Geometry Question 38

Question: If the plane $ 2ax-3ay+4az+6=0 $ passes through the midpoint of the line joining the centres of the spheres $ x^{2}+y^{2}+z^{2}+6x-8y-2z=13 $ and $ x^{2}+y^{2}+z^{2}-10x+4y-2z=8 $ , then $ a $ equals

[AIEEE 2005]

Options:

A) ? 2

B) 2

C) ? 1

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

$ S_1\equiv x^{2}+y^{2}+z^{2}+6x-8y-2z=13, $ $ C_1\equiv (-3,,4,,1), $ $ S_2\equiv x^{2}+y^{2}+z^{2}-10x+4y-2z=8, $ $ C_2\equiv (5,,-2,,1) $ So mid point of $ C_1C_2 $ (say P) $ \equiv P( \frac{5-3}{2},\frac{4-2}{2},\frac{1+1}{2} )=P(1,,1,,1) $ Now the plane $ 2ax-3ay+4az+6=0 $ passes through the point P, So, $ 2a(1)-3a(1)+4a(1)+6=0=2a-3a+4a+6=0 $
Þ $ 3a+6=0 $ Þ $ 3a=-6\Rightarrow a=-2 $ .