Three Dimensional Geometry Question 383

Which one of the following is the plane containing the line $ \frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{5} $ and parallel to z axis?

Options:

A) $ 2x-3y=0 $

B) $ 5x-2z=0 $

C) $ 5y-3z=0 $

D) $ 3x-2y=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The equation of the line is $ \frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{5}=r $ Where r is a constant. Any point on this line, is given by $ x=2r+2,y=3r+2,z=5r+4 $ Since a plane that is parallel to the z-axis will have no z-coordinate, z=0 $ z=0\Rightarrow 5r+4=0 $ or $ r=\frac{-4}{5} $ Putting this value of r for x and y coordinates. $ x=2r+2=2\times (-\frac{4}{5})+2 $ or $ 5x=-8+10 \Rightarrow 2 $ $ x=\frac{2}{5},or\frac{2}{x}=5 $ ?..(1) Similarly, $ y=3r+3=3\times (-\frac{4}{5})+3 $ or, $ 5y=-12+15=3 $ $ y=\frac{3}{5}\Rightarrow \frac{3}{y}=5 $ ?..(2) From equations (1) and (2) $ \frac{2}{x}=\frac{3}{y}\Rightarrow 3x-2y=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें