Three Dimensional Geometry Question 385

Question: If $ \theta $ is the acute angle between the diagonals of a cube, then which one of the following is correct?

Options:

A) $ \theta <30{}^\circ $

B) $ \theta =60{}^\circ $

C) $ 30{}^\circ <\theta <60{}^\circ $

D) $ \theta >60{}^\circ $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let there be cube of side ?a? Co-ordinates of its vertices O, A, B, C, D, E, F have be marked in the figure. Diagonals are OE, FC, GB and AD. Direction ratios $ (dr_3) $ of these diagonals are: OE $ \langle (a-0),(a-0),(a-0) \rangle =(a,,a,,a) $ $ FC\langle (-a,a,-a) \rangle ;GB\langle (-a,a,a) \rangle $ and AD $ \langle (a,a,-a) \rangle $ Their dcs are: $ OE,\langle \frac{a}{\sqrt{a^{2}+a^{2}+a^{2}}},\frac{a}{\sqrt{a^{2}+a^{2}+a^{2}}},\frac{a}{\sqrt{a^{2}+a^{2}+a^{2}}} \rangle $ $ =\langle \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \rangle $ $ AD,\langle \frac{a}{\sqrt{\Sigma a^{2}}},\frac{a}{\sqrt{\Sigma a^{2}}},\frac{-a}{\sqrt{\Sigma a^{2}}} \rangle ,=,\langle \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \rangle $ Angle, $ \theta $ , between AD and OE is given by $ \cos \theta =\pm \frac{\frac{1}{\sqrt{3}}\times \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\times \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}\times \frac{1}{\sqrt{3}}}{\sqrt{{ {{( \frac{1}{\sqrt{3}} )}^{2}}+( \frac{1}{{{\sqrt{3}}^{3}}} )+{{( \frac{1}{\sqrt{3}} )}^{2}} }}{ {{( \frac{1}{\sqrt{3}} )}^{2}}+{{( \frac{1}{\sqrt{3}} )}^{2}}+{{( \frac{1}{\sqrt{3}} )}^{2}} }} $ $ =\frac{\frac{1}{3}}{1\times 1}=\pm \frac{1}{3} $ Since the cube is in positive octant, we take $ +\frac{1}{3}. $ So, $ \cos \theta =\frac{1}{3}\Rightarrow \theta >60’ $ [Since value of $ \cos \theta $ decreases as $ \theta $ increases in 0 to $ 90{}^\circ .\cos \theta =1 $ when $ \theta =0{}^\circ $ and $ \cos \theta =0 $ when $ \theta =90{}^\circ $ ]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें