Three Dimensional Geometry Question 386

Question: What is the acute angle between the planes $ x+y+2z=3 $ and $ -2x+y-z=11? $

Options:

A) $ \pi /5 $

B) $ \pi /4 $

C) $ \pi /6 $

D) $ \pi /3 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The given equation of the planes are $ x+y+2z=3 $ and $ -2x+y-z=11. $ We know that, the angle between the planes $ a_1x+b_1y+c_1z+d_1=0 $ and $ a_2x+b_2y+c_2z+d_2=0 $ is given by $ \cos \theta =| \frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^{2}+b_1^{2}+c_1^{2}}\sqrt{a_2^{2}+b_2^{2}+c_2^{2}}} | $ Here, $ a_1=1,b_1=1,c_1=2,a_2=-2,b_2=1,c_2=-1 $
$ \therefore \cos \theta =| \frac{1\times (-2)+1\times 1+2\times (-1)}{\sqrt{1+1+4}\sqrt{4+1+1}} | $ $ =| \frac{-2+1-2}{\sqrt{6}\sqrt{6}} |=| \frac{3}{6} |=\frac{1}{2}=\cos \frac{\pi }{3}\Rightarrow \theta =\frac{\pi }{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें