Three Dimensional Geometry Question 395

Question: Consider the following relations among the angles $ \alpha $ , $ \beta $ and $ \gamma $ made by a vector with the coordinate axes

I. $ \cos 2\alpha +\cos 2\beta +\cos 2\gamma =-1 $ II. $ {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma =1 $ Which of the above is/are correct?

Options:

A) Only I

B) Only II

C) Both I and II

D) Neither I nor II

Show Answer

Answer:

Correct Answer: A

Solution:

[a] We have. $ {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1 $ ??(i)
$ \Rightarrow 2{{\cos }^{2}}\alpha +2{{\cos }^{2}}\beta +2{{\cos }^{2}}\gamma =2 $
$ \Rightarrow 2{{\cos }^{2}}\alpha -1+2{{\cos }^{2}}\beta -1+2{{\cos }^{2}}\gamma -1=2-3 $
$ \Rightarrow \cos 2\alpha +\cos 2\beta +\cos 2\gamma =-1 $ Hence statement- I is correct. And now from (i), $ 1-{{\sin }^{2}}\alpha +1-{{\sin }^{2}}\beta +1-{{\sin }^{2}}\gamma =1 $
$ \Rightarrow {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma =2 $ Hence, only statement I is correct.