Three Dimensional Geometry Question 40

Question: The radius of sphere $ x+2y+2z=15 $ and $ x^{2}+y^{2}+z^{2}-2y-4z=11 $ is

[AMU 2005]

Options:

A) 2

B) $ \sqrt{7} $

C) 3

D) $ \sqrt{5} $

Show Answer

Answer:

Correct Answer: B

Solution:

Equation of sphere is, $ x^{2}+y^{2}+z^{2}-2y-4z=11 $ Centre of sphere = (0, 1, 2) and radius of sphere = 4 Let centre of circle be $ (\alpha ,\beta ,\gamma ) $ The d.r?s of line joining from centre of sphere to the centre of circle is $ (\alpha -0,\beta -1,\gamma -2) $ or $ (\alpha ,\beta -1,\gamma -2) $ But this line is normal at plane $ x+2y+2z=15 $ \ $ \frac{\alpha }{1}=\frac{\beta -1}{2}=\frac{\gamma -2}{2}=k $ $ \alpha =k,\beta =2k+1,\gamma =2k+2 $ $ \because $ Centre of circle lies on $ x+2y+2z=15 $ \ $ k+2(2k+1)+2(2k+2)=15 $
$ \Rightarrow k=1 $ So, centre of circle = (1, 3, 4) Therefore, Radius of circle $ =\sqrt{{{(Radius,of,sphere)}^{2}}-{{(Length,of,joining,line,of,centre)}^{2}}} $ $ =\sqrt{{{(4)}^{2}}-[{{(1-0)}^{2}}+{{(3-1)}^{2}}+{{(4-2)}^{2}}}] $ $ =\sqrt{16-9}=\sqrt{7} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें