Three Dimensional Geometry Question 400

Question: The vector equation of the line of intersection of the planes $ \vec{r}=\vec{b}+{\lambda_1}(\vec{b}-\vec{a})+{\mu_1}(\vec{a}-\vec{c}) $ and $ \vec{r}=\vec{b}+{\lambda_2}(\vec{b}-\vec{c})+{\mu_2}(\vec{a}+\vec{c}) $, $\vec{a},\vec{b},\vec{c}$ being non-coplanar vectors, is

Options:

A) $ \vec{r}=\vec{b}+{\mu_1}(\vec{a}+\vec{c}) $

B) $ \vec{r}=\vec{b}+{\lambda_1}(\vec{a}-\vec{c}) $

C) $ \vec{r}=2\vec{b}+{\lambda_2}(\vec{a}-\vec{c}) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

At the line of intersection of the two given planes, we have $ \vec{b}+{\lambda_1}(\vec{b}-\vec{a})+{\mu_1}(\vec{a}+\vec{c})=\vec{c}+{\lambda_2}(\vec{b}-\vec{c})+{\mu_2}(\vec{a}+\vec{b}) $

$ \Rightarrow (-\lambda +{\mu_1}-{\mu_2})\vec{a}+(1+{\lambda_1}-{\lambda_2}-{\mu_2})\vec{b}+({\mu_1}-1+{\lambda_2})\vec{c}=\vec{0} $
$ \Rightarrow -{\lambda_1}+{\mu_1}-{\mu_2}=0,\ 1+{\lambda_2}-{\lambda_2}{\mu_2}=0 $ and $ {\mu_1} - 1 + {\lambda_2} = 0 $ [ $ \therefore $ $ \vec{a},\vec{b},\vec{c} $ are non-coplanar vectors. From the last two equations, we obtain $ {\lambda_1}+{\mu_1}-{\mu_2}=0 $ on solving this equation with $ -{\lambda_1}+{\mu_1}-{\mu_2}=0, $ we get $ {\mu_1}={\mu_2} $ and $ {\lambda_1}=0 $

$ \therefore {\lambda_1}=0,{\mu_1}={\mu_2} $ and $ {\lambda_2}=1-{\mu_1} $ on substituting these values in either of the given equations, we obtain $ \vec{r}=\vec{b}+{\mu_1}(\vec{a}+\vec{c}) $ As the required line of intersection of the given plane.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें