Three Dimensional Geometry Question 402

Question: The d. r. of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle $ \pi /4 $ with plane $ x+y=3 $ are

Options:

A) $ 1,\sqrt{2},1 $

B) $ 1,1,\sqrt{2} $

C) 1, 1, 2

D) $ \sqrt{2},1,,1 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Equation of plane through (1, 0, 0) is $ a(x-1)+by+cz=0 $ (i) (i) Passes through (0, 1, 0). $ -a+b=0 $
$ \Rightarrow b=a; $ Also, $ \cos 45{}^\circ =\frac{a+a}{\sqrt{2(2a^{2}+c^{2})}}\Rightarrow 2a=\sqrt{2a^{2}+c^{2}} $
$ \Rightarrow 2a^{2}=c^{2}\Rightarrow c=\sqrt{2a}. $ So. d. r of normal area $ a,a\sqrt{2a} $ i.e., $ 1,1,\sqrt{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें