Three Dimensional Geometry Question 405

Question: What is the value of n so that the angle between the lines having direction ratios (1, 1, 1) and (1, -1, n) is $ 60{}^\circ $ ?

Options:

A) $ \sqrt{3} $

B) $ \sqrt{6} $

C) 3

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] If $ (l_1,m_1,n_1) $ and $ (l_2,m_2,n_2) $ are the direction ratios then angle between the lines is $ \cos q=\frac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^{2}+m_1^{2}+n_1^{2}}\sqrt{l_2^{2}+m_2^{2}+n_2^{2}}} $ Here $ l_1=1,m_1=1,n_1=1 $ and $ l_2=1,m_2=-1,n_2=n $ and $ q=60{}^\circ $
$ \therefore \cos 60{}^\circ =\frac{1\times 1+1\times (-1)+1\times n}{\sqrt{1^{2}+1^{2}+1^{2}}\times \sqrt{1^{2}+1^{2}+n^{2}}} $
$ \Rightarrow \frac{1}{2}=\frac{n}{\sqrt{3}\sqrt{2+n^{2}}}\Rightarrow n^{2}=6\Rightarrow n=\pm \sqrt{6} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें