Three Dimensional Geometry Question 406

Question: The locus of a point, such that the sum of the squares of its distances from the planes $ x+y+z=0, $ $ x-z=0 $ And $ x-2y+z=0 $ is 9, is

Options:

A) $ x^{2}+y^{2}+z^{2}=3 $

B) $ x^{2}+y^{2}+z^{2}=6 $

C) $ x^{2}+y^{2}+z^{2}=9 $

D) $ x^{2}+y^{2}+z^{2}=12 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let the variable point be $ (\alpha ,\beta ,\gamma ) $ then according to question $ {{( \frac{| \alpha +\beta +\gamma |}{\sqrt{3}} )}^{2}}+{{( \frac{| \alpha -\gamma |}{\sqrt{2}} )}^{2}}+{{( \frac{| \alpha -2\beta +\gamma |}{\sqrt{6}} )}^{2}}=9 $
$ \Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}}=9. $ So, the locus of the point is $ x^{2}+y^{2}+z^{2}=9 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें