Three Dimensional Geometry Question 409

Question: If $ l_1,m_1,n_1 $ and $ l_2,m_2,n_2 $ are direction consines of the two lines inclined to each other at an angle $ \theta $ , the direction cosines of the bisector of the angle between these lines are

Options:

A) $ \frac{l_1-l_2}{2\sin \frac{\theta }{2}},\frac{m_1-m_2}{2\sin \frac{\theta }{2}},\frac{n_1-n_2}{2\sin \frac{\theta }{2}} $

B) $ \frac{l_1-l_2}{2\cos \frac{\theta }{2}},\frac{m_1-m_2}{2\cos \frac{\theta }{2}},\frac{n_1-n_2}{2\cos \frac{\theta }{2}} $

C) $ \frac{l_1-l_2}{2\sin \frac{\theta }{2}},\frac{m_1-m_2}{2\sin \frac{\theta }{2}},\frac{n_1-n_2}{2\sin \frac{\theta }{2}} $

D) $ \frac{l_1-l_2}{2\cos \frac{\theta }{2}},\frac{m_1-m_2}{2\cos \frac{\theta }{2}},\frac{n_1-n_2}{2\cos \frac{\theta }{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let the lines $ L_1 $ and $ L_2 $ intersect at 0 say origin, Consider points P and Q on these lines such that OP=OQ=1. Then coordinates of P and Q are $ (l_1,m_1,n_1) $ and $ (l_2,m_2,n_2) $ . Their mid-point $ ( \frac{l_1+l_2}{2},\frac{m_1+m_2}{2},\frac{n_1+n_2}{2} ) $ lies on the bisector L … So, direction ratios of L are $ \frac{l_1+l_2}{2},\frac{m_1+m_2}{2},\frac{n_1+n_2}{2} $ Also, $ OR=OP\cos \frac{\theta }{2} $

$ \therefore $ Direction cosines of L are $ \frac{l_1+l_2}{2\cos \frac{\theta }{2}},\frac{m_1+m_2}{2\cos \frac{\theta }{2}},\frac{n_1+n_2}{2\cos \frac{\theta }{2}} $ Similarly for other bisectors we can replace $ l_2,m_2,n_2, $ by $ -l_2,-m_2,-n_2 $ and $ \theta $ by $ \pi -\theta $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें