Three Dimensional Geometry Question 410

Question: The equation of the plane containing the line $ 2x-5y+z=3;x+y+4z=5 $ , and parallel to the plane, $ x+3y+6z=1 $ , is:

Options:

A) $ x+3y+6z=7 $

B) $ 2x+6y+12z=-13 $

C) $ 2x+6y+12z=13 $

D) $ x+3y+6z=-7 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Equation of the plane containing the lines $ 2x-5y+z=3 $ and $ x+y+4z=5 $ is $ 2x-5y+z-3+\lambda (x+y+4z-5)=0 $
$ \Rightarrow (2+\lambda )x+(-5+\lambda )y+(1+4\lambda )z+(-3-5\lambda )=0 $ ?.(i) Since the plane (i) parallel to the given plane $ x+3y+6z=1 $
$ \therefore \frac{2+\lambda }{1}=\frac{-5+\lambda }{3}=\frac{1+4\lambda }{6}\Rightarrow \lambda =-\frac{11}{2} $ Hence equation of the required plane is $ ( 2-\frac{11}{2} )x+( -5-\frac{11}{2} )y+( 1-\frac{44}{2} )z+( -3+\frac{55}{2} )=0 $
$ \Rightarrow (4-11)x+(-10-11)y+(2-44)z+(-6+55)=0 $
$ \Rightarrow x+3y+6z=7 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें