Three Dimensional Geometry Question 411

Question: A variable plane at a distance of 1 unit form the origin cuts the coordinate axes at A, B and C. if the centroid $ D(x,y,z) $ of triangle ABC satisfies the relation $ \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k $ , then the value of k is

Options:

A) 3

B) 1

C) 1/3

D) 9

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let the equation of variable plane be $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1. $ Which meets the axes at $ A(a,0,0),B(0,b,0) $ and $ C(0,0,c) $ . The centroid of $ \Delta ABC $ is $ ( \frac{a}{3},\frac{b}{3},\frac{c}{3} ) $ and it satisfies the relation $ \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k $ . Thus, $ \frac{9}{a^{2}}+\frac{9}{b^{2}}+\frac{9}{c^{2}}=k $ or $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{k}{9} $ ??…(i) Also it is given that the distance of the plane $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ from (0, 0, 0) is 1 unit. Therefore, $ \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}=1 $ or $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=1 $ ?..(ii) From (i) and (ii), we get $ k/e=1, $ i.e., k=9



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें