Three Dimensional Geometry Question 412

Question: If $ P_1 $ and $ P_2 $ are the lengths of the perpendiculars from the points (2,3,4) and (1,1,4) respectively from the plane $ 3x-6y+2z+11=0 $ , then $ P_1 $ and $ P_2 $ are the roots of the equation

Options:

A) $ P^{2}-23P+7=0 $

B) $ 7P^{2}-23P+16=0 $

C) $ P^{2}-17P+16=0 $

D) $ P^{2}-16P+7=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

We have, $ P_1=| ,\frac{3\times 2-6\times 3+2\times 4+11}{\sqrt{3^{2}+{{(-6)}^{2}}+{{(2)}^{2}}}}, |=1 $
$ P_2=| \frac{3\times 1-6\times 1+2\times 4+11}{\sqrt{3^{2}+{{(-6)}^{2}}+{{(2)}^{2}}}} |=\frac{16}{7} $
So, equation whose roots are $ P_1 $ and $ P_2 $ is,
$ 7P^{2}-23P+16=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें