Three-Dimensional-Geometry Question 414

Question: The direction cosines of the normal to the plane $ x+2y-3z+4=0 $ are

[MP PET 1996; Pb. CET 2000]

Options:

A) $ -\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

B) $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

C) $ -\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

D) $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}} $

Show Answer

Answer:

Correct Answer: A

Solution:

The direction cosines of the normal to the plane are $ \frac{1}{\sqrt{1^{2}+2^{2}+3^{2}}},\frac{2}{\sqrt{1^{2}+2^{2}+3^{2}}},\frac{-,3}{\sqrt{1^{2}+2^{2}+3^{2}}} $ i.e., $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{-,3}{\sqrt{14}} $ . But $ x+2y-3z+4=0 $ can be written as $ -x-2y+3z-4=0 $ . Thus the direction cosines are $ \frac{-1}{\sqrt{14}},\frac{-2}{\sqrt{14}},\frac{3}{\sqrt{14}} $ .