Three-Dimensional-Geometry Question 414

Question: The direction cosines of the normal to the plane $ x+2y-3z+4=0 $ are

[MP PET 1996; Pb. CET 2000]

Options:

A) $ -\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

B) $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

C) $ -\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}} $

D) $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}} $

Show Answer

Answer:

Correct Answer: A

Solution:

The direction cosines of the normal to the plane are $ \frac{1}{\sqrt{1^{2}+2^{2}+3^{2}}},\frac{2}{\sqrt{1^{2}+2^{2}+3^{2}}},\frac{-,3}{\sqrt{1^{2}+2^{2}+3^{2}}} $ i.e., $ \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{-,3}{\sqrt{14}} $ . But $ x+2y-3z+4=0 $ can be written as $ -x-2y+3z-4=0 $ . Thus the direction cosines are $ \frac{-1}{\sqrt{14}},\frac{-2}{\sqrt{14}},\frac{3}{\sqrt{14}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें