Three Dimensional Geometry Question 42

Question: The equation of the sphere concentric with the sphere $ 2x^{2}+2y^{2}+2z^{2}-6x+2y-4z=1 $ and double its radius is

[Kerala (Engg.) 2005]

Options:

A) $ x^{2}+y^{2}+z^{2}-x+y-z=1 $

B) $ x^{2}+y^{2}+z^{2}-6x+2y-4z=1 $

C) $ 2x^{2}+2y^{2}+2z^{2}-6x+2y-4z-15=0 $

D) $ x^{2}+y^{2}+z^{2}-3x+y-2z=1 $

E) $ 2x^{2}+2y^{2}+2z^{2}-6x+2y-4z-25=0 $

Show Answer

Answer:

Correct Answer: E

Solution:

Equation of sphere is, $ x^{2}+y^{2}+z^{2}-3x+y-2z-\frac{1}{2}=0 $ \ Centre of sphere $ =( \frac{3}{2},\frac{-1}{2},1 ) $ Radius $ =\sqrt{( \frac{9}{4} )+( \frac{1}{4} )+1+\frac{1}{2}}=2 $ Now, radius of required sphere = 4, which is concentric with the given sphere. Hence, equation of required sphere is, $ {{( x-\frac{3}{2} )}^{2}}+{{( y+\frac{1}{2} )}^{2}}+{{(z-1)}^{2}}=16 $ i.e., $ 2x^{2}+2y^{2}+2z^{2}-6x+2y-4z-25=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें