Three Dimensional Geometry Question 49

Question: The point of intersection of the line $ \frac{x}{1}=\frac{y-1}{2}=\frac{z+2}{3} $ and the plane $ 2x+3y+z=0 $ is

[MP PET 1989]

Options:

A) (0, 1, ?2)

B) (1, 2, 3)

C) (?1, 9, ?25)

D) $ ( \frac{-1}{11},\frac{9}{11}\frac{-25}{11} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{x}{1}=\frac{y-1}{2}=\frac{z+2}{3}=r $ , (say) So, $ x=r $ , $ y=2r+1 $ , $ z=3r-2 $
$ \therefore ,2r+3,(2r+1)+(3r-2)=0\Rightarrow r=\frac{-1}{11} $ Hence, $ x=\frac{-1}{11},,y=\frac{9}{11},z=-\frac{25}{11} $ .