Three Dimensional Geometry Question 90

Question: $ L_1 $ and $ L_2 $ are two lines whose vector equations are $ L_1:\overset{\to }{\mathop{r}},=\lambda ((cos\theta +\sqrt{3})\hat{i}+(\sqrt{2}sin\theta )\hat{j} $ $ +(cos\theta -\sqrt{3})\hat{k})L_2:\overset{\to }{\mathop{r}},=\mu ( a\hat{i}+b\hat{j}+c\hat{k} ) $ , where $ \lambda $ and $ \mu $ are scalars and $ \alpha $ is the acute angle between $ L_1 $ and $ L_2 $ . If the angle $ ‘\alpha ’ $ is independent of $ \theta $ then the value of $ ‘\alpha ’ $ is

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Both the lines pass through origin. Line $ L_1 $ is parallel to the vector $ {{\overrightarrow{V}}_2}=a\hat{i}+b\hat{j}+c\hat{k} $
$ \therefore \cos \alpha =\frac{\overrightarrow{V_1.}\overrightarrow{V_2}}{|\overrightarrow{V_1}||\overrightarrow{V_2}|} $ $ =\frac{a(cso\theta +\sqrt{3})+(b\sqrt{2})sin\theta +c(cos\theta -\sqrt{3})}{\sqrt{a^{2}+b^{2}+c^{2}}\sqrt{{{(cos\theta +\sqrt{3})}^{2}}+2{{\sin }^{2}}\theta +{{(cos\theta -\sqrt{3})}^{2}}}} $ $ =\frac{(a+c)cos\theta +b\sqrt{3})+\sin \theta +(a-c-\sqrt{3})}{\sqrt{a^{2}+b^{2}+c^{2}}\sqrt{2+6}} $ In order that $ \cos \alpha $ is independent of $ \theta $ , we get $ a+c=0 $ and b=0
$ \therefore \cos \alpha =\frac{2a\sqrt{3}}{a\sqrt{2}2\sqrt{2}}=\frac{\sqrt{3}}{2}\Rightarrow \alpha =\frac{\pi }{6} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें