Three Dimensional Geometry Question 93

Question: If $ P\equiv (0, 1, 0),Q\equiv (0, 0, 1) $ , then projection of $ PQ $ on the plane $ x+y+z=3 $ is

[EAMCET 2002]

Options:

A) $ \sqrt{3} $

3

C) $ \sqrt{2} $

2

Show Answer

Answer:

Correct Answer: C

Solution:

Given plane is $ x+y+z-3=0 $ . From point P and Q draw PM and QN perpendicular on the given plane and QR ⊥ MP. $ |MP| =\frac{|0+1+0-3|}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{2}{\sqrt{3}} $ , $ |NQ| =\frac{2}{\sqrt{3}} $ $ |PQ| =\sqrt{{{(0-0)}^{2}}+{{(0-1)}^{2}}+{{(1-0)}^{2}}}=\sqrt{2} $
$ |RP|=|MP|-|MR| = |MP|-|NQ|=0 $
\ $ |NM|,=,|QR|,=\sqrt{PQ^{2}-RP^{2}}=\sqrt{{{(\sqrt{2})}^{2}}-0} $ $ =,\sqrt{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें