Three Dimensional Geometry Question 97
Question: The co-ordinates of a point which is equidistant from the points $ (0,,0,\ 0),(a,,0,,0),(0,b,0) $ and $ (0,,0,,c) $ are given by
[MP PET 1993]
Options:
A) $ ( \frac{a}{2},\frac{b}{2},\frac{c}{2} ) $
B) $ ( -\frac{a}{2},-\frac{b}{2},\frac{c}{2} ) $
C) $ ( \frac{a}{2},-\frac{b}{2},,-\frac{c}{2} ) $
D) $ ( -\frac{a}{2},\frac{b}{2},,-\frac{c}{2} ) $
Show Answer
Answer:
Correct Answer: A
Solution:
Let point be $ (x,,y,,z), $ then $ x^{2}+y^{2}+z^{2} $ = $ {{(x-a)}^{2}}+y^{2}+z^{2}=x^{2}+{{(y-b)}^{2}}+z^{2}=x^{2}+y^{2}+{{(z-c)}^{2}} $ Therefore $ x=\frac{a}{2},y=\frac{b}{2} $ and $ z=\frac{c}{2} $ .