Triangles And Properties Of Triangle Question 18
Question: A and B are two points in the horizontal plane through O. the foot of pillar OP of height h such that $ \angle AOB=\theta $ . If the elevation of the top of the pillar form A and B are also equal to $ \theta $ , then AB is equal to
Options:
A) $ h\cot \theta $
B) $ h\cos \theta \sec \frac{\theta }{2} $
C) $ h\cot \theta \sin \frac{\theta }{2} $
D) $ h\cos \theta \cos ec\frac{\theta }{2} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ OA=OB=h\cot \theta $ Now, $ AB=2AN=2AO\sin \frac{\theta }{2} $ $ =2h\cot \theta ,\sin \frac{\theta }{2}=h\cos \theta \sec \frac{\theta }{2} $
 BETA
  BETA 
             
             
           
           
           
          