Triangles And Properties Of Triangle Question 18

Question: A and B are two points in the horizontal plane through O. the foot of pillar OP of height h such that $ \angle AOB=\theta $ . If the elevation of the top of the pillar form A and B are also equal to $ \theta $ , then AB is equal to

Options:

A) $ h\cot \theta $

B) $ h\cos \theta \sec \frac{\theta }{2} $

C) $ h\cot \theta \sin \frac{\theta }{2} $

D) $ h\cos \theta \cos ec\frac{\theta }{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ OA=OB=h\cot \theta $ Now, $ AB=2AN=2AO\sin \frac{\theta }{2} $ $ =2h\frac{\cos \theta }{\sin \theta },\sin \frac{\theta }{2}=h\cos \theta \sec \frac{\theta }{2} $