Triangles And Properties Of Triangle Question 24

Question: If the radius of the cirumcircle of isosceles triangle ABC is equal to AB=AC, then the angle A is:

Options:

A) $ 30{}^\circ $

B) $ 60{}^\circ $

C) $ 90{}^\circ $

D) $ 120{}^\circ $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] If the circumradius of triangle ABC be R, then $ R=\frac{a}{2\sin A}=\frac{b}{2\sin B}=\frac{c}{2\sin C} $ where a, b, c has their usual meanings. Given $ \Delta ABC $ is isosceles such that $ AB=AC $ Let circumradius be R, then $ R=\frac{AC}{2\sin B}=AB=AC\Rightarrow \frac{AC}{2\sin B}=AC $ $ \sin B=\frac{1}{2}\Rightarrow \sin B=\sin \frac{\pi }{6}\Rightarrow \angle B=\frac{\pi }{6}=\angle C $ We know that $ \angle A+\angle B+\angle C=180{}^\circ =\pi $ $ \angle A+\frac{\pi }{6}+\frac{\pi }{6}=\pi \Rightarrow \angle A+\frac{\pi }{3}=\pi $

$ \Rightarrow \angle A=\pi -\frac{\pi }{3}=\frac{2\pi }{3}=\frac{2\times 180}{3}\Rightarrow \angle A=120{}^\circ $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें