Triangles And Properties Of Triangle Question 25

Question: If, x, y and z are perpendiculars drawn on a, b and c, respectively, then the value of $ \frac{bx}{c}+\frac{cy}{a}+\frac{az}{b} $ will be

Options:

A) $ \frac{a^{2}+b^{2}+c^{2}}{2R} $

B) $ \frac{a^{2}+b^{2}+c^{2}}{R} $

C) $ \frac{a^{2}+b^{2}+c^{2}}{4R} $

D) $ \frac{2(a^{2}+b^{2}+c^{2})}{R} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let area of triangle be $ \Delta $ , then according to question, $ \Delta =\frac{1}{2}ax=\frac{1}{2}by=\frac{1}{2}cz\therefore \frac{bx}{c}+\frac{cy}{a}+\frac{az}{b} $ $ =\frac{b}{c}( \frac{2\Delta }{a} )+\frac{c}{a}( \frac{2\Delta }{b} )+\frac{a}{b}( \frac{2\Delta }{c} ) $ $ =\frac{2\Delta (b^{2}+c^{2}+a^{2})}{abc} $ $ =\frac{2(a^{2}+b^{2}+c^{2})}{abc}.\frac{abc}{4R}=\frac{a^{2}+b^{2}+c^{2}}{2R} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें