Triangles And Properties Of Triangle Question 30

Question: O is the circumventer of the triangle ABC and $ R_1,R_2,R_3 $ are the radii of the circumcircles of the triangles OBA, OCA and OAB respectively, then $ \frac{a}{R_1}+\frac{b}{R_2}+\frac{c}{R_3} $ is equal to

Options:

A) $ \frac{abc}{R} $

B) $ \frac{abc}{R^{3}} $

C) $ \frac{abc}{R^{4}} $

D) None

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ R_1=\frac{BC}{2\sin (\angle BOC)}=\frac{a}{2\sin 2A} $

$ \therefore \frac{a}{R_1}=2\sin 2A $ Similarly, $ \frac{b}{R_2}=2\sin 2B $ and $ \frac{c}{R_3}=2\sin 2C $ So, $ \frac{a}{R_1}+\frac{b}{R_2}+\frac{c}{R_3} $ $ =2(sin2A+sin2B+sin2C) $ $ =2.4\sin A\sin B\sin C $ $ [\because ,A+B+C=\pi ] $ $ =(2sinA)(2sinB)(2sinC)=( \frac{a}{R} )( \frac{b}{R} )( \frac{c}{R} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें