Triangles And Properties Of Triangle Question 33

Question: If $ A+B+C=\pi , $ then $ \cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C $ is equal to:

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

[b] If $ A+B+C=\pi , $ then $ \cos mA+\cos mB+\cos mC $ $ =1-4\sin \frac{mA}{2}\sin \frac{mB}{2}\sin \frac{mC}{2} $
$ \therefore $ For $ m=2:\cos 2A+\cos 2B+\cos 2C $ $ =1-4\sin A\sin B\sin C $
$ \Rightarrow \cos 2A+\cos 2B+\cos 2C $ $ +4\sin A\sin BsinC=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें