Triangles And Properties Of Triangle Question 33

Question: If $ A+B+C=\pi , $ then $ \cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C $ is equal to:

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

[b] If $ A+B+C=\pi , $ then $ \cos mA+\cos mB+\cos mC $ $ =1-4\sin \frac{mA}{2}\sin \frac{mB}{2}\sin \frac{mC}{2} $
$ \therefore $ For $ m=2:\cos 2A+\cos 2B+\cos 2C $ $ =1-4\sin A\sin B\sin C $
$ \Rightarrow \cos 2A+\cos 2B+\cos 2C $ $ +4\sin A\sin BsinC=1 $