Triangles And Properties Of Triangle Question 34

Question: Each side of an equilateral triangle subtends an angle of $ 60{}^\circ $ at the top of a tower h m high located at the centre of the triangle. If a is the length of each of side of the triangle, then

Options:

A) $ 3a^{2}=2h^{2} $

B) $ 2a^{2}=3h^{2} $

C) $ a^{2}=3h^{2} $

D) $ 3a^{2}=h^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let QT be the tower of height (h) I $ \Delta PRS. $ now, each triangle QPR, QRS, QSP ar equilateral. Thus QP=QS=QR=a. In $ \Delta QTP, $ $ QP^{2}=QT^{2}+PT^{2} $

$ \Rightarrow a^{2}=h^{2}+{{( \frac{a}{2}\sec 30{}^\circ )}^{2}} $

$ \Rightarrow a^{2}=h^{2}+\frac{a^{2}}{4}.\frac{4}{3} $

$ \Rightarrow a^{2}=h^{2}+\frac{a^{2}}{3} $

$ \Rightarrow a^{2}-\frac{a^{2}}{3}=h^{2} $

$ \Rightarrow \frac{3a^{2}-a^{2}}{3}=h^{2}\therefore 2a^{2}=3h^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें