Triangles And Properties Of Triangle Question 35

Question: In a $ \Delta ABC $ $ \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^{2}c^{2}} $ equals

Options:

A) $ {{\cos }^{2}}A $

B) $ {{\cos }^{2}}B $

C) $ {{\sin }^{2}}A $

D) $ {{\sin }^{2}}B $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] We know that, $ 2s=a+b+c $
$ \therefore \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^{2}c^{2}} $ $ =\frac{2s(2s-2a)(2s-2b)(2s-2c)}{4b^{2}c^{2}} $ $ =4\frac{s(s-a)}{bc}\times \frac{(s-b)(s-c)}{bc} $ $ =4{{\cos }^{2}}\frac{A}{2}\times {{\sin }^{2}}\frac{A}{2} $ $ ={{\sin }^{2}}A $