Triangles And Properties Of Triangle Question 36

Question: Let D be the middle point of the side BC of a triangle ABC. If the triangle ADC is equilateral, then $ a^{2}:b^{2}:c^{2} $ is equal to

Options:

A) $ 1:4:3 $

B) $ 4:1:3 $

C) $ 4:3:1 $

D) $ 3:4:1 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \cos 120{}^\circ =\frac{x^{2}+x^{2}-AB^{2}}{2x^{2}} $

$ \Rightarrow \frac{2x^{2}-AB^{2}}{2x^{2}}=\frac{-1}{2} $

$ \Rightarrow 4x^{2}-2AB^{2}=-2x^{2} $

$ \Rightarrow 3x^{2}=AB^{2}\Rightarrow AB=x\sqrt{3} $

$ \Rightarrow a^{2}:b^{2}:c^{2}={{(2x)}^{2}}:x^{2}:{{(x\sqrt{3})}^{2}} $ $ =4x^{2}:x^{2}:3x^{2}=4:1:3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें