Triangles And Properties Of Triangle Question 38

Question: In a triangle $ ABC,2a^{2}+4b^{2}+c^{2}=4ab+2ac, $ then $ \cos B $ is equal to

Options:

A) 0

B) $ \frac{1}{8} $

C) $ \frac{3}{8} $

D) $ \frac{7}{8} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ a^{2}+a^{2}+4b^{2}-4ab=2ac-c^{2} $

$ \Rightarrow {{(a-2b)}^{2}}+{{(a-c)}^{2}}=0 $ which is possible only when: $ a-2b=0anda-c $ $ =0 $ or $ \frac{a}{1}=\frac{b}{1/2}=\frac{c}{1}=\lambda $ (say)

$ \therefore a=\lambda ,b=\lambda /2,c=\lambda \therefore \cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac} $ $ =\frac{{{\lambda }^{2}}+{{\lambda }^{2}}-\frac{{{\lambda }^{2}}}{4}}{2{{\lambda }^{2}}}=1-\frac{1}{8}=\frac{7}{8} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index