Triangles And Properties Of Triangle Question 44

Question: In a $ \Delta ABC $ , if $ \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}, $ and the side $ a=2, $ then area of the triangle is

Options:

A) 1

B) 2

C) $ \frac{\sqrt{3}}{2} $

D) $ \sqrt{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c} $
$ \Rightarrow \frac{\cos A}{2R\sin A}=\frac{\cos B}{2R\sin B}=\frac{\cos C}{2R\sin C} $
$ \Rightarrow \cot A=\cot B=\cot C $
$ \Rightarrow A=B=C=60{}^\circ \Rightarrow \Delta ABC $ is equilateral Hence, $ \Delta =\frac{\sqrt{3}}{4}a^{2}=\sqrt{3}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें