Triangles And Properties Of Triangle Question 5

Question: The angle of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances 49 m and 36 m are $ 43{}^\circ $ and $ 47{}^\circ $ respectively. What is the height of the tower?

Options:

A) 40 m

B) 42 m

C) 45 m

D) 47 m

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ AB=h $ (height of the tower) $ BD=36m; $ $ BC=49m $ $ \angle D=47{}^\circ ; $ $ \angle C=43{}^\circ $ Now, in $ \Delta ABD, $ $ \tan 47{}^\circ =\frac{h}{36m} $ ? (i) and in $ \Delta ABC, $ $ \tan 43{}^\circ =\frac{h}{49m} $ $ \tan (90{}^\circ -47{}^\circ )=\frac{h}{49} $

$ \therefore \cot 47{}^\circ =\frac{h}{49} $ (ii) Multiplying equations (i) and (ii) $ \tan 47{}^\circ .\cot 47{}^\circ =\frac{h}{36}\times \frac{h}{49}=1=\frac{h^{2}}{36\times 49} $ $ h=6\times 7=42m $

$ \therefore $ Option [b] is correct



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें