Triangles And Properties Of Triangle Question 5

Question: The angle of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances 49 m and 36 m are $ 43{}^\circ $ and $ 47{}^\circ $ respectively. What is the height of the tower?

Options:

A) 40 m

B) 42 m

C) 45 m

D) 47 m

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ AB=h $ (height of the tower) $ BD=36m; $ $ BC=49m $ $ \angle D=47{}^\circ ; $ $ \angle C=43{}^\circ $ Now, in $ \Delta ABD, $ $ \tan 47{}^\circ =\frac{h}{36m} $ ? (i) and in $ \Delta ABC, $ $ \tan 43{}^\circ =\frac{h}{49m} $ $ \tan (90{}^\circ -47{}^\circ )=\frac{h}{49} $

$ \therefore \cot 47{}^\circ =\frac{h}{49} $ (ii) Multiplying equations (i) and (ii) $ \tan 47{}^\circ .\cot 47{}^\circ =\frac{h}{36}\times \frac{h}{49}=1=\frac{h^{2}}{36\times 49} $ $ h=6\times 7=42m $

$ \therefore $ Option [b] is correct