Triangles And Properties Of Triangle Question 7

Question: A moving boat is observed form the top of a cliff of 150 m height. The angle of depression of the boat changes form $ 60{}^\circ $ to $ 45{}^\circ $ in 2 minutes. What is the speed of the boat in meters per hours?

Options:

A) $ \frac{4500}{\sqrt{3}} $

B) $ \frac{4500(\sqrt{3}-1)}{\sqrt{3}} $

C) $ 4500\sqrt{3} $

D) $ \frac{4500(\sqrt{3}+1)}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \tan 60{}^\circ =\frac{150}{x}\Rightarrow x=\frac{150}{\sqrt{3}} $ Also, $ \tan 45{}^\circ =\frac{150}{x+y} $

$ \Rightarrow x+y=150 $

$ \Rightarrow y=150-x=150-\frac{150}{\sqrt{3}} $

$ \Rightarrow y=150( \frac{\sqrt{3}-1}{\sqrt{3}} )= $ distance travelled Speed in (m/hr) $ =\frac{150(\sqrt{3}-1)}{\sqrt{3}}\times \frac{60}{2} $ $ =4500\frac{(\sqrt{3}-1)}{\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें