Trigonometric Equations Question 101

Question: If $ \sec 4\theta -\sec 2\theta =2 $ , then the general value of $ \theta $ is

[IIT 1963]

Options:

A) $ (2n+1)\frac{\pi }{4} $

B) $ (2n+1)\frac{\pi }{10} $

C) $ n\pi +\frac{\pi }{2} $ or $ \frac{n\pi }{5}+\frac{\pi }{10} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sec 4\theta -\sec 2\theta =2 $
    $ \Rightarrow $ $ \cos 2\theta -\cos 4\theta =2\cos 4\theta \cos 2\theta $
    $ \Rightarrow $ $ -\cos 4\theta =\cos 6\theta $
    $ \Rightarrow $ $ 2\cos 5\theta \cos \theta =0 $
    $ \Rightarrow $ $ H=\frac{h\cot 15^{o}}{\cot 15^{o}-1} $ or $ \frac{n\pi }{5}+\frac{\pi }{10} $ .