Trigonometric Equations Question 105

Question: In a triangle, the length of the two larger sides are 10 cm and 9 cm respectively. If the angles of the triangle are in A.P., then the length of the third side in cm can be

[MP PET 1990, 2001; IIT 1987; DCE 2001]

Options:

A) $ 5-\sqrt{6} $ only

B) $ 5+\sqrt{6} $ only

C) $ 5-\sqrt{6} $ or $ 5+\sqrt{6} $

D) Neither $ 5-\sqrt{6} $ nor $ 5+\sqrt{6} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • We know that in triangle larger the side larger the angle. Since angles $ \angle A,,\angle B $ and $ \angle C $ are in AP. Hence $ \angle B=60^{o} $ $ \cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}\Rightarrow \frac{1}{2}=\frac{100+a^{2}-81}{20a} $
    $ \Rightarrow $ $ a^{2}+19=10a\Rightarrow a^{2}-10a+19=0 $ $ $ $ a=\frac{10\pm \sqrt{100-76}}{2}\Rightarrow a+c\sqrt{2}=5\pm \sqrt{6} $ .