Trigonometric Equations Question 112

Question: In a triangle $ ABC $ , if $ B=3C $ , then the values of $ \sqrt{( \frac{b+c}{4c} )} $ and $ ( \frac{b-c}{2c} ) $ are

Options:

A) $ \sin C,\sin \frac{A}{2} $

B) $ \cos C,\sin \frac{A}{2} $

C) $ \sin C,\cos \frac{A}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \sqrt{\frac{b+c}{4c}}=\sqrt{\frac{\sin 3C+\sin C}{4\sin C}} $
    Þ $ \sqrt{\frac{2\sin 2C\cos C}{4\sin C}}=\cos C $ $ \frac{b-c}{2c}=\frac{\sin 3C-\sin C}{2\sin C}=\frac{2\cos 2C\sin C}{2\sin C}=\cos 2C=\sin \frac{A}{2} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें