Trigonometric Equations Question 115

Question: If the sides of a $ \Delta $ be $ (x^{2}+x+1),,(2x+1) $ and $ (x^{2}-1), $ then the greatest angle is

[EAMCET 1987; Kerala (Engg.) 2001]

Options:

A) $ 105^{o} $

B) $ 120^{o} $

C) $ 135^{o} $

D) None

Show Answer

Answer:

Correct Answer: B

Solution:

  • Sides are $ (x^{2}+x+1),,(2x+1),,(x^{2}-1) $ . The greatest side subtends the greatest angle. Hence $ x^{2}+x+1 $ is the greatest side. Now $ \cos \theta =\frac{{{(2x+1)}^{2}}+{{(x^{2}-1)}^{2}}-{{(x^{2}+x+1)}^{2}}}{2(2x+1)(x^{2}-1)} $
    $ \Rightarrow $ $ \theta =120^{o} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें