Trigonometric Equations Question 118

Question: In a $ \Delta ABC, $ let $ \angle C=\frac{\pi }{2}. $ If $ r $ and $ R $ are in radius and the circum-radius respectively of the triangle, then $ 2(r+R) $ is equal to

[IIT Screening 2000; AIEEE 2005]

Options:

A) $ a+b $

B) $ b+c $

C) $ c+a $

D) $ a+b+c $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Here, $ R=OA=OB=OC=\frac{1}{2}AB=\frac{c}{2} $ $ r=\frac{\Delta }{s}=\frac{\frac{1}{2}ab}{\frac{1}{2}(a+b+c)}=\frac{ab}{a+b+c} $
    $ \therefore r+R=\frac{ab}{a+b+c}+\frac{c}{2}=\frac{2ab+c(a+b+c)}{2(a+b+c)} $ $ =\frac{2ab+ca+bc+a^{2}+b^{2}}{2(a+b+c)},(\because ,c^{2}=a^{2}+b^{2}) $ $ =\frac{{{(a+b)}^{2}}+c(a+b)}{2(a+b+c)},=\frac{(a+b)(a+b+c)}{2(a+b+c)} $
    $ \therefore 2(r+R)=a+b. $