Trigonometric Equations Question 12

Question: If $ \sin 2\theta =\cos 3\theta $ and $ \theta $ is an acute angle, then $ \sin \theta $ is equal to

[EAMCET 1980]

Options:

A) $ \frac{\sqrt{5}-1}{4} $

B) $ \frac{-\sqrt{5}-1}{4} $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \sin 2\theta =\cos 3\theta $
    $ \Rightarrow $ $ 3\theta =2n\pi \pm ( \frac{\pi }{2}-2\theta ) $
    $ \Rightarrow $ $ \theta =\frac{2n\pi }{5}+\frac{\pi }{10} $ or $ \theta =2n\pi -\frac{\pi }{2} $ . Since $ \theta $ is acute Þ $ \theta =\frac{\pi }{10} $
    Þ $ \sin \theta =\frac{\sqrt{5}-1}{4} $ .