Trigonometric Equations Question 120

Question: ABC is triangular park with AB = AC = 100 m. A clock tower is situated at the mid-point of BC. The angles of elevation of the top of the tower at $ A $ and $ B $ are $ {{\cot }^{-1}}3.2 $ and $ cose{c^{-1}}2.6 $ respectively. The height of the tower is

[EAMCET 1992]

Options:

A) 50 m

B) 25 m

C) 40 m

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • DP is a clock tower standing at the middle point D of BC. $ \angle PAD=\alpha ={{\cot }^{-1}}3.2\Rightarrow \cot \alpha =3.2 $ and $ \angle PBD=\beta =cose{c^{-1}}2.6\Rightarrow cosec\beta =2.4 $
    $ \therefore $ $ \cot \beta =\sqrt{(cose{c^{2}}\beta -1)}=\sqrt{(5.76)}=2.4 $ In the triangles $ PAD $ and $ PBD $ , $ AD=h $ $ \cot \alpha =3.2h $ and $ BD=h\cot \beta =2.4h $ In the right angled $ \Delta ABD $ , $ AB^{2}=AD^{2}+BD^{2} $
    $ \Rightarrow $ $ 100^{2}=[{{(3.2)}^{2}}+{{(2.4)}^{2}}]h^{2}=16h^{2} $
    $ \Rightarrow $ $ h=25m $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें