Trigonometric Equations Question 121

Question: From the bottom of a pole of height h, the angle of elevation of the top of a tower is $ \alpha $ and the pole subtends angle $ \beta $ at the top of the tower. The height of the tower is

[Roorkee 1988]

Options:

A) $ \frac{h\tan (\alpha -\beta )}{\tan (\alpha -\beta )-\tan \alpha } $

B) $ \frac{h\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha } $

C) $ \frac{\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha } $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ d=H\cot \alpha  $   $ d=(H-h)\cot (\alpha -\beta ) $   
    

$ \Rightarrow $ $ H\cot \alpha $ $ =(H-h)\cot (\alpha -\beta ) $ or $ H=\frac{h\cot (\alpha -\beta )}{\cot (\alpha -\beta )-\cot \alpha } $ .