Trigonometric Equations Question 132

Question: The angle of elevation of the top of a tower from a point A due south of the tower is $ \alpha $ and from a point B due east of the tower is $ \beta $ . If AB =d, then the height of the tower is

[Roorkee 1979; Kurukshetra CEE 1998]

Options:

A) $ \frac{d}{\sqrt{{{\tan }^{2}}\alpha -{{\tan }^{2}}\beta }} $

B) $ \frac{d}{\sqrt{{{\tan }^{2}}\alpha +{{\tan }^{2}}\beta }} $

C) $ \frac{d}{\sqrt{{{\cot }^{2}}\alpha +{{\cot }^{2}}\beta }} $

D) $ \frac{d}{\sqrt{{{\cot }^{2}}\alpha -{{\cot }^{2}}\beta }} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ OB=h\cot \beta ,,OA=h\cot \alpha $ $ h^{2}=\frac{d^{2}}{{{\cot }^{2}}\beta +{{\cot }^{2}}\alpha } $
    $ \Rightarrow $ $ \Delta =( \frac{\sqrt{3}a^{2}}{4} )=3\sqrt{3}cm^{2},,\therefore ,R=\frac{abc}{4\Delta }=2cm $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें