Trigonometric Equations Question 14

Question: If $ 4{{\sin }^{4}}x+{{\cos }^{4}}x=1, $ then x =

[Roorkee 1989]

Options:

A) $ n\pi $

B) $ n\pi \pm {{\sin }^{-1}}\frac{2}{5} $

C) $ n\pi +\frac{\pi }{6} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • The given equation can be put in the form $ 4{{\sin }^{4}}x=1-{{\cos }^{4}}x=(1-{{\cos }^{2}}x),(1+{{\cos }^{2}}x) $
    $ \Rightarrow $ $ {{\sin }^{2}}x[4{{\sin }^{2}}x-1-(1-{{\sin }^{2}}x)]=0 $
    $ \Rightarrow $ $ {{\sin }^{2}}x[5{{\sin }^{2}}x-2]=0 $
    $ \Rightarrow $ $ \sin x=0 $ or $ \sin x=\pm \sqrt{2/5} $ . Hence $ x=n\pi $ is the required answer.