Trigonometric Equations Question 147

Question: If in a $ \Delta ABC $ , $ \cos A+2\cos B+\cos C=2 $ , then $ a,b,c $ are in

Options:

A) A. P.

B) H. P.

C) G. P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \cos A+2\cos B+\cos C=2 $
    Þ $ \cos A+\cos C=2(1-\cos B) $
    Þ $ 2\cos \frac{A+C}{2}\cos \frac{A-C}{2}=4{{\sin }^{2}}\frac{B}{2} $
    Þ $ 2\cos ( \frac{A-C}{2} )=4\sin \frac{B}{2} $
    Þ $ 2\cos \frac{B}{2}\cos ( \frac{A-C}{2} )=2( 2\sin \frac{B}{2}\cos \frac{B}{2} ) $
    Þ $ 2\sin ,( \frac{A+C}{2} )\cos ( \frac{A-C}{2} )=2( 2\sin \frac{B}{2}\cos \frac{B}{2} ) $
    Þ $ \sin A+\sin C=2\sin B\Rightarrow a+c=2b $
    Þ a, b, c are in A.P.