Trigonometric Equations Question 152

Question: In any triangle ABC, $ a\cot A+b\cot B+c\cot C= $

Options:

A) $ r+R $

B) $ r-R $

C) $ 2(r+R) $

D) $ 2(r-R) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ a\cot A+b\cot B+c\cot C $ = $ 2R(\sin A\cot A+\sin B\cot B+\sin C\cot C) $ = $ 2R(\cos A+\cos B+\cos C) $ = $ 2R( 1+4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} )=2R( 1+\frac{r}{R} )=2,(R+r) $ .