Trigonometric Equations Question 157

Question: In a triangle $ ABC $ if $ 2a^{2}b^{2}+2b^{2}c^{2}= $ $ a^{4}+b^{4}+c^{4} $ , then angle B is equal to

Options:

A) $ 45^{o} $ or $ 135^{o} $

B) $ 135^{o} $ or $ 120^{o} $

C) $ 30^{o} $ or $ 60^{o} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ 2a^{2}b^{2}+2b^{2}c^{2}=a^{4}+b^{4}+c^{4} $ Also, $ {{(a^{2}-b^{2}+c^{2})}^{2}}= $ $ a^{4}+b^{4}+c^{4}-2(a^{2}b^{2}+b^{2}c^{2}-c^{2}a^{2}) $
    Þ $ {{(a^{2}-b^{2}+c^{2})}^{2}}=2c^{2}a^{2} $ Þ $ \frac{a^{2}-b^{2}+c^{2}}{2ca}=\pm \frac{1}{\sqrt{2}}=\cos B $
    Þ $ B=45^{o} $ or $ 135^{o} $ .