Trigonometric Equations Question 165

Question: If the radius of the circumcircle of an isosceles triangle $ PQR $ is equal to $ PQ(=PR), $ then the angle P is

[IIT Screening 1992; Pb. CET 2004]

Options:

A) $ \frac{\pi }{6} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{2} $

D) $ \frac{2\pi }{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • In $ \Delta PQR, $ the radius of circumcircle is $ PQ=PR $
    $ \therefore $ $ PQ=PR=\frac{PQ}{2\sin R}=\frac{QR}{2\sin P}=\frac{PR}{2\sin Q} $
    $ \Rightarrow $ $ \sin R=\sin Q=\frac{1}{2}\Rightarrow \angle R=\angle Q=\frac{\pi }{6} $
    $ \Rightarrow $ $ \angle P=\pi -\angle R-\angle Q=\frac{2\pi }{3} $ .